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ABSTRACT

Graph-structured data is important in modeling relationships between multiple
entities, and can be used to represent states of the world as well as many data
structures. Li et al. (2016) describe a model known as a Gated Graph Sequence
Neural Network (GGS-NN) that produces sequences from graph-structured input.
In this work I introduce the Gated Graph Transformer Neural Network (GGT-
NN), an extension of GGS-NNs that uses graph-structured data as an intermediate
representation. The model can learn to construct and modify graphs in sophisti-
cated ways based on textual input, and also to use the graphs to produce a variety
of outputs. For example, the model successfully learns to solve almost all of the
bAbI tasks (Weston et al., 2016), and also discovers the rules governing graphical
formulations of a simple cellular automaton and a family of Turing machines.

1 INTRODUCTION

Many different types of data can be formulated using a graph structure. One form of data that lends
itself to a graphical representation is data involving relationships (edges) between entities (nodes).
Abstract maps of places and paths between them also have a natural graph representation, where
places are nodes and paths are edges. In addition, many data structures can be expressed in graphical
form, including linked lists and binary trees.

Substantial research has been done on producing output when given graph-structured input (Kashima
et al., 2003; Shervashidze et al., 2011; Perozzi et al., 2014; Bruna et al., 2013; Duvenaud et al.,
2015). Of particular relevance to this work are Graph Neural Networks (Gori et al., 2005; Scarselli
et al., 2009), or GNNs, which extend recursive neural networks by assigning states to each node in
a graph based on the states of adjacent nodes. Recently Li et al. (2016) have modified GNNs to use
gated state updates and to produce output sequences. The resulting networks, called GG-NNs and
GGS-NNs, are successful at solving a variety of tasks with graph-structured input.

The current work further builds upon GG-NNs and GGS-NNs by allowing graph-structured inter-
mediate representations, as well as graph-structured outputs. This is accomplished using a more
flexible graph definition, along with a set of graph transformations which take a graph and other
information as input and produce a modified version of the graph. This work also introduces the
Gated Graph Transformer Neural Network model (GGT-NN), which combines these transforma-
tions with a recurrent input model to incrementally construct a graph given natural language input,
and can either produce a final graph representing its current state, or use the graph to produce a
natural language output.

Extending GG-NNs in this way opens up a wide variety of applications. Since many types of data
can be naturally expressed as a graph, it is possible to train a GGT-NN model to manipulate a
meaningful graphical internal state. In this paper I demonstrate the GGT-NN model on the bAbI
task dataset, which contains a set of stories about the state of the world. By encoding this state as
a graph and providing these graphs to the model at training time, a GGT-NN model can be trained
to construct the correct graph from the input sentences and then answer questions based on this
internal graph. I also demonstrate that this architecture can learn complex update rules by training
it to model a simple 1D cellular automaton and arbitrary 4-state Turing machines. This requires the
network to learn how to transform its internal state based on the rules of each task.
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Figure 1: Diagram of the differentiable encoding of a graphical structure, as described in section 3.
On the left, the desired graph we wish to represent, in which there are 6 node types (shown as blue,
purple, red, orange, green, and yellow) and two edge types (shown as blue/solid and red/dashed).
Node 3 and the edge between nodes 6 and 7 have a low strength. On the right, depictions of the
node and edge matrices: annotations, strengths, state, and connectivity correspond to xv , sv , hv ,
and C, respectively. Saturation represents the value in each cell, where white represents 0, and
fully saturated represents 1. Note that each node’s annotation only has a single nonzero entry,
corresponding to each node having a single well-defined type, with the exception of node 3, which
has an annotation that does not correspond to a single type. State vectors are shaded arbitrarily
to indicate that they can store network-determined data. The edge connectivity matrix C is three
dimensional, indicated by stacking the blue-edge cell on top of the red-edge cell for a given source-
destination pair. Also notice the low strength for cell 3 in the strength vector and for the edge
between node 6 and node 7 in the connectivity matrix.

2 BACKGROUND

2.1 GRU

Gated Recurrent Units (GRU) are a type of recurrent network cell introduced by Cho et al. (2014).
Each unit uses a reset gate r and an update gate z, and updates according to

r(t) = σ
(
Wrx

(t) + Urh
(t−1) + br

)
z(t) = σ

(
Wzx

(t) + Uzh
(t−1) + bz

)
h̃(t) = φ

(
Wx + U

(
r(t) � h(t−1))+ b

)
h(t) = z� h(t−1) + (1− z)� h̃(t)

where σ is the logistic sigmoid function, φ is an activation function (here tanh is used), x(t) is the
input vector at timestep t, h(t) is the hidden output vector at timestep t, and W,U,Wr,Ur,Wz,
Uz , b, br and bz are learned weights and biases. Note that � denotes elementwise multiplication.

2.2 GG-NN AND GGS-NN

The Gated Graph Neural Network (GG-NN) is a form of graphical neural network model described
by Li et al. (2016). In a GG-NN, a graph G = (V, E) consists of a set V of nodes v with unique
values and a set E of directed edges e = (v, v′) ∈ V × V oriented from v to v′. Each node has an
annotation xv ∈ RN and a hidden state hv ∈ RD, and each edge has a type ye ∈ {1, · · · ,M}.
GG-NNs operate by first initializing the state hv of each node to correspond to the annotation xv .
Then, a series of propagation steps occur. In each step, information is transferred between nodes
across the edges, and the types of edge determine what information is sent. Each node sums the
input it receives from all adjacent nodes, and uses that to update its own internal state, in the same
manner as a GRU cell. Finally, the states of all nodes are used either to create a graph-level aggregate
output, or to classify each individual node.

GGS-NNs extend GG-NNs by performing a large number of propagation-output cycles. At each
stage, two versions of the GG-NN propagation process are run. The first is used to predict an output
for that timestep, and the second is used to update the annotations of the nodes for the next timestep.
This allows GGS-NNs to predict a sequence of outputs from a single graph.
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a) b) c) d) e)

Figure 2: Summary of the graph transformations. Input and output are represented as gray squares.
a) Node addition (Tadd), where the input is used by a recurrent network (white box) to produce new
nodes, of varying annotations and strengths. b) Node state update (Th), where each node receives
input (dashed line) and updates its internal state. c) Edge update (TC), where each existing edge
(colored) and potential edge (dashed) is added or removed according to the input and states of the
adjacent nodes (depicted as solid arrows meeting at circles on each edge). d) Propagation (Tprop),
where nodes exchange information along the current edges, and update their states. e) Aggregation
(Trepr), where a single representation is created using an attention mechanism, by summing informa-
tion from all nodes weighted by relevance (with weights shown by saturation of arrows).

3 DIFFERENTIABLE GRAPH TRANSFORMATIONS

In this section, I describe some modifications to the graph structure to make it fully differentiable,
and then propose a set of transformations which can be applied to a graph structure in order to
transform it. In particular, I redefine a graph G = (V, C) ∈ Γ as a set V of nodes v, and a connectivity
matrix C ∈ R|V|×|V|×Y , where Y is the number of possible edge types. As before, each node has
an annotation xv ∈ RN and a hidden state hv ∈ RD. However, there is an additional constraint that∑N
j=1 xv,j = 1. One can then interpret xv,j as the level of belief that v should have type j out of

N possible node types. Each node also has a strength sv ∈ [0, 1]. This represents the level of belief
that node v should exist, where sv = 1 means the node exists, and sv = 0 indicates that the node
should not exist and thus should be ignored.

Similarly, elements of C are constrained to the range [0, 1], and thus one can interpret Cv,v′,y as the
level of belief that there should be a directed edge of type y from v to v′. (Note that it is possible
for there to be edges of multiple types between the same two nodes v and v′, i.e. it is possible for
Cv,v′,y = Cv,v′,y′ = 1 where y 6= y′.) Figure 1 shows the values of xv , sv , hv , and C corresponding
to a particular graphical structure.

There are five classes of graph transformation:

a) Node addition (Tadd), which modifies a graph by adding new nodes and assigning them
annotations xv and strengths sv based on an input vector.

b) Node state update (Th), which modifies the internal state of each node using an input vector
(similar to a GRU update step). Optionally, different input can be given to nodes of each
type, based on direct textual references to specific node types. This version is called a direct
reference update (Th,direct).

c) Edge update (TC), which modifies the edges between each pair of nodes based on the inter-
nal states of the two nodes and an external input vector.

d) Propagation (Tprop), which allows nodes to trade information across the existing edges and
then update their internal states based on the information received.

e) Aggregation (Trepr), which uses an attention mechanism to select relevant nodes and then
generates a graph-level output.

Each transformation has its own trainable parameters. Together, these transformations can be com-
bined to process a graph in complex ways. An overview of these operations is shown in Figure 2.
For details about the implementation of each of these transformations, see Appendix B.

4 GATED GRAPH TRANSFORMER NEURAL NETWORK (GGT-NN)

In this section I introduce the Gated Graph Transformer Neural Network (GGT-NN), which is con-
structed by combining a series of these transformations. Depending on the configuration of the
transformations, a GGT-NN can take textual or graph-structured input, and produce textual or graph-
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Algorithm 1 Graph Transformation Pseudocode

1: G ← ∅
2: for k from 1 to K do
3: G ← Th(G, i(k))
4: if direct reference enabled then
5: G ← Th,direct(G,D(k))

6: end if
7: if intermediate propagation enabled then
8: G ← Tprop(G)
9: end if

10: hadd
G ← Trepr(G)

11: G ← Tadd(G, [i(k) hadd
G ])

12: G ← TC(G, i(k))
13: end for
14: G ← T query

h (G, iquery)

15: if direct reference enabled then
16: G ← T query

h,direct(G,D
query)

17: end if
18: G ← T query

prop (G)
19: hanswer

G ← T query
repr (G)

20: return foutput(h
answer
G )

structured output. Here I describe one particular GGT-NN configuration, designed to build and
modify a graph based on a sequence of input sentences, and then produce an answer to a query.

When run, the model performs the following: For each sentence k, each word is converted to a
one-hot vector w(k)

l , and the sequence of words (of length L) is passed through a GRU layer to
produce a sequence of partial-sentence representation vectors p(k)

l . The full sentence representation
vector i(k) is initialized to the last partial representation vector p(k)

L . Furthermore, a direct-reference
input matrix D(k) is set to the sum of partial representation vectors corresponding to the words that
directly reference a node type, i.e. D(k)

n =
∑
l∈Rn

p
(k)
l where Rn is the set of words in sentence k

that directly refer to node type n. This acts like an attention mechanism, by accumulating the partial
representation vectors for the words that directly reference each type, and masking out the vectors
corresponding to other words.

Next, a series of graph transformations are applied, as depicted in Algorithm 1. Depending on the
task, direct reference updates and per-sentence propagation can be enabled or disabled. The output
function foutput will depend on the specific type of answer desired. If the answer is a single word,
foutput can be a multilayer perceptron followed by a softmax operation. If the answer is a sequence
of words, foutput can use a recurrent network (such as a GRU) to produce a sequence of outputs.
Note that transformations with different superscripts (Th and T query

h , for instance) refer to similar
transformations with different learned weights.

Since the processing of the input and all of the graph transformations are differentiable, at this point
the network output can be compared with the correct output for that query and used to update the
network parameters, including both the GRU parameters used when processing the input and the
internal weights associated with each transformation.

4.1 SUPERVISION

As with many supervised models, one can evaluate the loss based on the likelihood of producing
an incorrect answer, and then minimize the loss by backpropagation. However, based on initial
experiments, the model appeared to require additional supervision to extract meaningful graph-
structured data. To provide this additional supervision, I found it beneficial to provide the correct
graph at each timestep and train the network to produce that graph. This occurs in two stages, first
when new nodes are proposed, and then when edges are adjusted. For the edge adjustment, the edge
loss between a correct edge matrix C∗ and the computed edge matrix C is given by

Ledge = −C∗ · ln(C)− (1− C∗) · ln(1− C).

The node adjustment is slightly more complex. Multiple nodes are added in each timestep, but the
order of those nodes is arbitrary, and only their existence is important. Thus it should be possible for
the network to determine the optimal ordering of the nodes. In fact, this is important because there
is no guarantee that the nodes will be ordered consistently in the training data.

Vinyals et al. (2016) demonstrate a simple method for training a network to output unordered sets:
the network produces a sequence of outputs, and these outputs are compared with the closest order-
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ing of the training data, i.e., the ordering of the training data which would produce the smallest loss
when compared with the network output. Vinyals et al. show that when using this method, the net-
work arbitrarily chooses an ordering which may not be the optimal ordering for the task. However,
in this case any ordering should be sufficient, and I found the arbitrary orderings selected in this
way to work well in practice. In particular, letting s∗π(v) and x∗π(v) denote the correct strength and
annotations of node v under ordering π, the loss becomes

Lnode = −max
π

|Vnew|∑
v=|Vold|+1

s∗π(v) ln(sv) + (1− s∗π(v)) ln(1− sv) + x∗π(v) · ln(xv).

At this point the correct values C∗, s∗π(v) and x∗π(v) are substituted into the graph for further process-
ing. Note that only the edges and the new nodes are replaced by the supervision. The hidden states
of all existing nodes are propagated without adjustment.

4.2 OTHER TRANSFORMATION CONFIGURATIONS

The structure described in Algorithm 1 is designed for question-answering tasks. However, due
to the composability of the individual graph transformations, other configurations could be used to
solve other tasks that operate on structured data.

For instance, if a task consists of tracking relationships between a fixed set of objects, one could
construct a version of the model that does not use the new-nodes transformation (Tadd), but instead
only modifies edges. If the task was to extract information from an existing graph, a structure similar
to the GGS-NNs could be built by using only the propagation and aggregation transformations. If the
task was to construct a graph based on textual input, the query processing steps could be omitted, and
instead the final graph could be returned for processing. And if information should be gathered from
a sequence of graphs instead of from a single graph, the query processing steps could be modified
to run in parallel on the full sequence of graphs and extract information from each graph. This last
modification is demonstrated in Appendix D.

5 EXPERIMENTS

5.1 BABI TASKS

I evaluated the GGT-NN model on the bAbI tasks, a set of simple natural-language tasks, where each
task is structured as a sequence of sentences followed by a query (Weston et al., 2016). The gener-
ation procedure for the bAbI tasks includes a “Knowledge” object for each sentence, representing
the current state of knowledge after that sentence. I exposed this knowledge object in graph format,
and used this to train a GGT-NN in supervised mode. The knowledge object provides names for
each node type, and direct reference was performed based on these names: if a word in the sentence
matched a node type name, it was parsed as a direct reference to all nodes of that type. For details
on this graphical format, see Appendix C.

5.1.1 ANALYSIS AND RESULTS

I trained two versions of the GGT-NN model for each task: one with and one without direct refer-
ence. Tasks 3 and 5, which involve a complex temporal component, were trained with intermediate
propagation, whereas all of the other tasks were not because the structure of the tasks made such
complexity unnecessary. Most task models were configured to output a single word, but task 19
(pathfinding) used a GRU to output multiple words, and task 8 (listing) was configured to output a
strength for each possible word to allow multiple words to be selected without having to consider
ordering.

Results are shown in Tables 1 and 2. The GGT-NN model was able to reach 95% accuracy in all
but one of the tasks, and reached 100% accuracy in eleven of them (see Table 2). Additionally, for
fourteen of the tasks, the model was able to reach 95% accuracy using 500 or fewer of the 1000
training examples (see Table 1).

The only task that the GGT-NN was unable to solve with 95% accuracy was task 17 (Positional
Reasoning), for which the model was not able to attain a high accuracy. Task 17 has a larger number
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Task G
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G
G

T-
N

N

1 - Single Supporting Fact 100 1000
2 - Two Supporting Facts 250 -
3 - Three Supporting Facts 1000 -
4 - Two Arg. Relations 1000 1000
5 - Three Arg. Relations 500 -
6 - Yes/No Questions 100 -
7 - Counting 250 -
8 - Lists/Sets 250 1000
9 - Simple Negation 250 -

10 - Indefinite Knowledge 1000 -

Task G
G

T-
N

N
+

di
re

ct
re

f

G
G

T-
N

N

11 - Basic Coreference 100 1000
12 - Conjunction 500 1000
13 - Compound Coref. 100 1000
14 - Time Reasoning 1000 -
15 - Basic Deduction 500 500
16 - Basic Induction 100 500
17 - Positional Reasoning - -
18 - Size Reasoning 1000 -
19 - Path Finding 500 -
20 - Agent’s Motivations 250 250

Table 1: Number of training examples needed before the GGT-NN model could attain ≤ 5% error
on each of the bAbI tasks. Experiments were run with 50, 100, 250, 500, and 1000 examples.
“GGT-NN + direct ref.” denotes the performance of the model with direct reference, and “GGT-
NN” denotes the performance of the model without direct reference. Dashes indicate that the model
was unable to reach the desired accuracy with 1000 examples.

1,000 examples 10,000 examples

Task G
G

T-
N

N
+

di
re

ct
re

f

G
G

T-
N

N

L
ST

M

M
em

N
N

M
em

N
2N

E
nt

N
et

N
T

M

D
-N

T
M

M
em

N
2N

*

D
N

C

D
M

N
+

E
nt

N
et

1 0 0.7 50.0 0 0 0.7 31.5 4.4 0 0 0 0
2 0 5.7 80.0 0 8.3 56.4 54.5 27.5 0.3 0.4 0.3 0.1
3 1.3 12.0 80.0 0 40.3 69.7 43.9 71.3 2.1 1.8 1.1 4.1
4 1.2 2.2 39.0 0 2.8 1.4 0 0 0 0 0 0
5 1.6 10.9 30.0 2.0 13.1 4.6 0.8 1.7 0.8 0.8 0.5 0.3
6 0 7.7 52.0 0 7.6 30.0 17.1 1.5 0.1 0 0 0.2
7 0 5.6 51.0 15.0 17.3 22.3 17.8 6.0 2.0 0.6 2.4 0
8 0 3.3 55.0 9.0 10.0 19.2 13.8 1.7 0.9 0.3 0 0.5
9 0 11.6 36.0 0 13.2 31.5 16.4 0.6 0.3 0.2 0 0.1

10 3.4 28.6 56.0 2.0 15.1 15.6 16.6 19.8 0 0.2 0 0.6
11 0 0.2 28.0 0 0.9 8.0 15.2 0 0 0 0 0.3
12 0.1 0.7 26.0 0 0.2 0.8 8.9 6.2 0 0 0.2 0
13 0 0.8 6.0 0 0.4 9.0 7.4 7.5 0 0 0 1.3
14 2.2 55.1 73.0 1.0 1.7 62.9 24.2 17.5 0.2 0.4 0.2 0
15 0.9 0 79.0 0 0 57.8 47.0 0 0 0 0 0
16 0 0 77.0 0 1.3 53.2 53.6 49.6 51.8 55.1 45.3 0.2
17 34.5 48.0 49.0 35.0 51.0 46.4 25.5 1.2 18.6 12.0 4.2 0.5
18 2.1 10.6 48.0 5.0 11.1 8.8 2.2 0.2 5.3 0.8 2.1 0.3
19 0 70.6 92.0 64.0 82.8 90.4 4.3 39.5 2.3 3.9 0 2.3
20 0 1.0 9.0 0 0 2.6 1.5 0 0 0 0 0

Table 2: Error rates of various models on the bAbI tasks. Bold indicates≤ 5% error. For descriptions
of each of the tasks, see Table 1. “GGT-NN + direct ref.” denotes the GGT-NN model with direct
reference, and “GGT-NN” denotes the version without direct reference. See text for details regarding
the models used for comparison. Results from LSTM and MemNN reproduced from Weston et al.
(2016). Results from other existing models reproduced from Henaff et al. (2016).
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of possible entities than the other tasks: each entity consists of a color (chosen from five options)
and a shape (chosen from four shapes), for a total of 20 unique entities that must be represented
separately. Additionally, the stories are much shorter than those in other tasks (2 facts for each set
of 8 questions). It is likely that these additional complexities caused the network performance to
suffer.

For comparison, accuracy on the bAbI tasks is also included for a simple sequence-to-sequence
LSTM model and for a variety of existing state-of-the-art approaches (see Table 2): a simple
sequence-to-sequence LSTM model, as implemented in Weston et al. (2016), a modified Mem-
ory Network model (MemNN, Weston et al., 2016), End-To-End Memory Network (MemN2N,
Sukhbaatar et al., 2015), Recurrent Entity Network (EntNet, Henaff et al., 2016), Neural Turing
Machine (NTM, Graves et al., 2014), Dynamic NTM (D-NTM, Gulcehre et al., 2016), a larger
version of the MemN2N model with weight tying and nonlinearity (MemN2N*, Sukhbaatar et al.,
2015), Differentiable Neural Computer (DNC, Graves et al., 2016), and Dynamic Memory Network
(DMN+, Xiong et al., 2016). Although the GGT-NN model was trained using only 1,000 training
examples, results using 10,000 examples have also been reproduced here for comparison. Also, it
is important to note that the GGT-NN and MemNN models were trained with strong supervision:
the GGT-NN model was trained with full graph information, and the MemNN model was trained
with information on which sentences were relevant to the query. All other models were trained
end-to-end without additional supervision.

Since the GGT-NN and MemNN models are both strongly supervised, it is interesting to note that
each approach outperforms the other on a subset of the tasks. In particular, the GGT-NN model with
direct reference attains a higher level of accuracy on the following tasks, with an improvement of
0.4-64% depending on the task: task 5 (0.4%), task 7 (15%), task 8 (9%), task 17 (0.5%), task 18
(2.9%), and task 19 (64%). This may indicate that a graphical representation is superior to a list of
sentence memories for solving these tasks. On the other hand, the MemNN model outperforms the
GGT-NN model (0.1-2.9% greater accuracy) on tasks 3, 4, 10, 12, 14, and 15.

Of particular interest is the performance on task 19, the pathfinding task, for which the GGT-NN
model with direct reference performs better than all but one of the other models (DMN+), and
shows a large improvement over the performance of the MemNN model. This is reasonable, since
pathfinding is a task that is naturally suited to a graphical representation. The shortest path between
two nodes can be easily found by sending information across all paths away from one of the nodes in
a distributed fashion, which the GGT-NN model allows. Note that the preexisting GGS-NN model
(discussed in Section 2.2) was also able to successfully learn the pathfinding task, but required the
input to be preprocessed into graphical form even when evaluating the model, and thus could not
be directly evaluated on the textual form of any of the bAbI tasks (Li et al., 2016). The current
results demonstrate that the proposed GGT-NN model is able to solve the pathfinding task when
given textual input.

Similarly, both variants of the GGT-NN model show improvement over many other models on task
16, the induction task. Solving the induction task requires being able to infer relationships based on
similarities between entities. (One example from this task: Lily is a swan. Lily is white. Bernhard
is green. Greg is a swan. What color is Greg? A:white.) In a graphical setting, this can be done
by following a sequence of edges (Greg → swan → Lily → white), and the performance of the
GGT-NN model indicates that this task is particularly suited to such a representation.

In general, the GGT-NN model with direct reference performs better than the model without it. The
model with direct reference reaches 95% accuracy on 19/20 of the bAbI tasks, while the model
without direct reference reaches that level of accuracy on 9/20 of the tasks (see Table 2). Addi-
tionally, when compared to the direct-reference model, the model without direct reference requires
more training examples in order to reach the accuracy threshold (see Table 1). This indicates that,
although the model can be used without direct reference, adding direct reference greatly improves
the training of the model.

5.2 RULE DISCOVERY TASKS

To demonstrate the power of GGT-NN to model a wide variety of graph-based problems, I applied
the GGT-NN to two additional tasks. In each task, a sequence of data structures were transformed
into a graphical format, and the GGT-NN was tasked with predicting the data for the next timestep
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Original Task Generalization: 20 Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Table 3: Accuracy of GGT-NN on the Rule 30 Automaton and Turing Machine tasks.

1000 iterations 2000 iterations 3000 iterations 7000 iterations Ground truth

Figure 3: Visualization of network performance on the Rule 30 Automaton task. Top node (purple)
represents zero, bottom node (blue) represents 1, and middle nodes (green, orange, and red) repre-
sent individual cells. Blue edges indicate adjacent cells, and gold edges indicate the value of each
cell. Three timesteps occur between each row.

based on the current timestep. No additional information was provided as textual input; instead, the
network was tasked with learning the rules governing the evolution of the graph structure over time.

5.2.1 CELLULAR AUTOMATON TASK

The first task used was a 1-dimensional cellular automaton, specifically the binary cellular automa-
ton known as Rule 30 (Wolfram, 2002). Rule 30 acts on an infinite set of cells, each with a binary
state (either 0 or 1). At each timestep, each cell deterministically changes state based on its previous
state and the states of its neighbors. In particular, the update rules are

Current neighborhood 111 110 101 100 011 010 001 000
Next value 0 0 0 1 1 1 1 0

Cell states can be converted into graphical format by treating the cells as a linked list. Each of the
cells is represented by a node with edges connecting it to the cell’s neighbors, and a value edge is
used to indicate whether the cell is 0 or 1. This format is described in more detail in Appendix C.

5.2.2 TURING MACHINES

The second task was simulating an arbitrary 2-symbol 4-state Turing machine. A Turing machine
operates on an infinite tape of cells, each containing a symbol from a finite set of possible symbols.
It has a head, which points at a particular cell and can read and write the symbol at that cell. It also
has an internal state, from a finite set of states. At each timestep, based on the current state and the
contents of the cell at the head, the machine writes a new symbol, changes the internal state, and can
move the head left or right or leave it in place. The action of the machine depends on a finite set of
rules, which specify the actions to take for each state-symbol combination. Note that the version of
Turing machine used here has only 2 symbols, and requires that the initial contents of the tape be all
0 (the first symbol) except for finitely many 1s (the second symbol).

When converting a Turing machine to graphical format, the tape of the machine is modeled as a
linked list of cells. Additionally, each state of the machine is denoted by a state node, and edges
between these nodes encode the transition rules. There is also a head node, which connects both to
the current cell and to the current state of the machine. See Appendix C for more details.

5.2.3 ANALYSIS AND RESULTS

The GGT-NN model was trained on 1000 examples of the Rule 30 automaton with different ini-
tial states, each of which simulated 7 timesteps of the automaton, and 20,000 examples of Turing
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machines with different rules and initial tape contents, each of which simulated 6 timesteps of the
Turing machine. Performance was then evaluated on 1000 new examples generated with the same
format. The models were evaluated by picking the most likely graph generated by the model, and
comparing it with the correct graph. The percent accuracy denotes the fraction of the examples for
which these two graphs were identical at all timesteps. In addition to evaluating the performance on
identical tasks, the generalization ability of the models was also assessed. The same trained models
were evaluated on versions of the task with 20 and 30 timesteps of simulation.

Results are shown in Table 3. The models successfully learned the assigned tasks, reaching high
levels of accuracy for both tasks. Additionally, the models show the ability to generalize to large
inputs, giving a perfect output in the majority of extended tasks. For visualization purposes, Figure
3 shows the model at various stages of training when evaluated starting with a single 1 cell.

6 COMPARISON WITH RELATED WORK

Many methods have been proposed for combining neural networks with graphs. These methods gen-
erally require the input to the network to be in graphical format. For instance, GNNs and GGS-NNs
take a graph as input, and propagate information between nodes according to the graph structure
(Gori et al., 2005; Scarselli et al., 2009; Li et al., 2016). Similarly, graph convolutional networks
extract information from an existing graph structure by using approximations to spectral graph con-
volutions (Kipf & Welling, 2016). These methods are similar to GGT-NNs in that they all store
information in the nodes of a graph and use edges to determine how information flows. However,
they all use a graph with fixed structure, and can only accept graphical data. The GGT-NN model,
on the other hand, allows the graph structure to be built and modified based on unstructured input.

Giles et al. (1992) describe a method for extracting a finite state machine from a trained recurrent
neural network by quantizing the hidden states of the network, recording all possible state transi-
tions, and using them to construct a minimal directed graph representing the state machine. This
method, however, requires postprocessing of the network to extract the graph, and is limited to ex-
tracting graphs that represent state machines. Additionally, although the FSM extraction method
described by Giles et al. (1992) and the GGT-NN model both produce graphs using neural networks,
the goals are different: the FSM extraction method aims to learn a single graph that can classify
sequences, whereas the GGT-NN model aims to learn a neural network that can manipulate graphs.

The lifted relational neural network (LRNN) is another approach to working with structured data
(Sourek et al., 2015). LRNNs require the input to be formatted as a combination of weighted predi-
cate logic statements, encompassing both general rules and specific known facts. For each training
example, the statements are used to construct a “ground neural network”, with a connection pattern
determined by the dependencies between the statements. LRNNs can learn to extract information by
adjusting the weights of each statement, but require the rules to be composed by hand based on the
task structure. Furthermore, unlike in GGT-NNs, a LRNN has no internal state associated with the
objects it describes (which are instead represented by single neurons), and the relationships between
objects cannot be constructed or modified by the network.

Multiple recent architectures have included differentiable internal states. Memory Networks, as de-
scribed in Weston et al. (2014), and the fully differentiable end-to-end memory networks, described
in Sukhbaatar et al. (2015), both utilize a differentiable long-term memory component, consisting
of a set of memories that are produced by encoding the input sentences. To answer a query, an
attention mechanism is used to select a subset of these memories, and the resulting memories are
processed to produce the desired output. Differentiable Neural Computers (DNCs), described in
Graves et al. (2016), interact with a fixed-size memory using a set of read and write “heads”, which
can be moved within the memory either by searching for particular content or by following temporal
“links of association” that track the order in which data was written.

Memory networks and DNCs share with the GGT-NN model the ability to iteratively construct
an internal state based on textual input, and use that internal state to answer questions about the
underlying structured data. However, in these models, the structure of the internal state is implicit:
although the network can store and work with structured data, the actual memory consists of a set
of vectors that cannot be easily interpreted, except by monitoring the network access patterns. The
GGT-NN model, on the other hand, explicitly models the internal state as a graph with labeled
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nodes and edges. This allows the produced graph to be extracted, visualized, and potentially used in
downstream applications that require graph-structured input.

Hierarchical Attentive Memory (HAM) is a memory-based architecture that consists of a binary tree
built on top of an input sequence (Andrychowicz & Kurach, 2016). A recurrent controller accesses
the HAM module by performing a top-down search through the tree, at each stage choosing to
attend to either the left or right subtrees. Once this process reaches a leaf, the value of the leaf is
provided to the controller to use in predicting the next output, and this leaf’s value can be updated
with a new value. This architecture is especially suited toward sequence-based tasks, and has been
shown to generalize to longer sequences very efficiently due to the tree structure. However, it is
unclear whether a HAM module would work well with non-sequential structured data, since the tree
structure is fixed by the network.

One advantage of the GGT-NN model over existing works is that it can process data in a distributed
fashion. Each node independently processes its surroundings, which can be beneficial for complex
tasks such as pathfinding on a graph. This is in contrast to memory networks, DNCs, and HAM
modules, which are restricted to processing only a fixed number of locations in a given timestep.
On the other hand, the distributed nature of the GGT-NN model means that it is less time and space
efficient than these other networks. Since every node can communicate with every other node, the
time and space required to run a GGT-NN step scales quadratically with the size of the input. A
DNC or memory network, on the other hand, either scales linearly (since it attends to all stored
data or memories) or is constant (if restricted to a fixed-size memory), and a HAM module scales
logarithmically (due to the tree structure).

7 CONCLUSION

The results presented here show that GGT-NNs are able to successfully model a wide variety of
tasks using graph-structured states and potentially could be useful in solving many other types of
problems. The specific GGT-NN model described here can be used as-is for tasks consisting of
a sequence of input sentences and graphs, optionally followed by a query. In addition, due to the
modular nature of GGT-NNs, it is possible to reconfigure the order of the transformations to produce
a model suitable for a different task.

The GGT-NN architecture has a few advantages over the architectures described in existing works.
In contrast to other approaches to working with structured data, GGT-NNs are designed to work with
unstructured input, and are able to modify a graphical structure based on the input. And in contrast
to memory networks or DNCs, the internal state of the network is explicitly graph structured, and
complex computations can be distributed across the nodes of the graph.

One downside of the current model is that the time and space required to train the model increase
very quickly as the complexity of the task increases, which limits the model’s applicability. It would
be very advantageous to develop optimizations that would allow the model to train faster and with
smaller space requirements, such as using sparse edge connections, or only processing some subset
of the nodes at each timestep. Another promising direction of future work is in reducing the level of
supervision needed to obtain meaningful graphs, for example by combining a few examples that have
full graph-level supervision with a larger set of examples that do not have graph-level information,
or using additional regularization to enable the GGT-NN model to be trained without any graph
information.

There are exciting potential uses for the GGT-NN model. One particularly interesting application
would be using GGT-NNs to extract graph-structured information from unstructured textual de-
scriptions. More generally, the graph transformations provided here may allow machine learning to
interoperate more flexibly with other data sources and processes with structured inputs and outputs.
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APPENDIX A BACKGROUND ON GG-NNS AND GGS-NNS

This section gives additional background on the implementation of GG-NNs and GGS-NNs, de-
scribed by Li et al. (2016).

Recall from section 2.2 that GG-NNs represent a graph G = (V, E) as a set V of nodes v with unique
values 1, . . . , |V| and a set E of directed edges e = (v, v′) ∈ V × V oriented from v to v′. Each
node has an annotation xv ∈ RN and a hidden state hv ∈ RD. Additionally, each edge has a type
ye ∈ {1, · · · ,M}.

Initially, h(1)
v is set to the annotation xv padded with zeros. Then nodes exchange information for

some fixed number of timesteps T according to the propagation model

h
(1)
v = [x>v ,0]> a

(t)
v = A>v:[h

(t−1)>
1 · · ·h(t−1)>

|V| ]> (1)

z
(t)
v = σ(Wza

(t)
v + Uh

(t−1)
v ) r

(t)
v = σ(Wra

(t)
v + Urh

(t−1)
v )

h̃
(t)
v = tanh(Wa

(t)
v + U(r

(t)
v � h

(t−1)
v )) h

(t)
v = (1− z

(t)
v )� h

(t−1)
v + z

(t)
v � h̃

(t)
v .

Here a
(t)
v represents the information received by each node from its neighbors in the graph, and the

matrix A ∈ RD|V|×2D|V| has a specific structure that determines how nodes communicate. The first
half of A, denoted A(out) ∈ RD|V|×D|V|, corresponds to outgoing edges, whereas the second half
A(in) ∈ RD|V|×D|V| corresponds to incoming edges.

Each edge type y corresponds to specific forward and backward propagation matrices
Py,P

′
y ∈ RD×D which determine how to propagate information across an edge of that type in

each direction. The D×D-sized submatrix of A(out) in position i, j contains Py if an edge of type
y connects nodes ni to nj , or 0 if no such edge connects in that direction. Similarly, the D × D-
sized submatrix of the matrix A(in) in position i, j contains P′y if an edge of type y connects nodes
nj to ni, or 0 if no such edge connects in that direction. Av: ∈ RD×2D|V| is the submatrix of A
corresponding to node v. Thus, multiplication by Av: in 1 is equivalent to taking the following sum:

a(t)v =
∑
v′∈V

(
M∑
y=1

sedge(v, v
′, y)�Py + sedge(v

′, v, y)�P′y

)
h
(t−1)
v′ (2)

where sedge(v, v
′, y) is 1 if e = (v, v′) ∈ E and ye = y, and 0 otherwise.

The output from a GG-NN is flexible depending on the task. For node selection tasks, a node score
ov = g(h

(T )
v ,xv) is given for each node, and then a softmax operation is applied. Graph-level

outputs are obtained by combining an attention mechanism i and a node representation function j,
both implemented as neural networks, to produce the output representation

hG = tanh
(∑

v∈V σ(i(h
(T )
v ,xv))� tanh(j(h

(T )
v ,xv))

)
(3)

Gated Graph Sequence Neural Networks (GGS-NN) are an extension of GG-NNs to sequential
output o(1), . . . ,o(K). At each output step k, the annotation matrix X is given by X (k) =

[x
(k)
1 , . . . ,x

(k)
|V|]
> ∈ R|V|×LV . A GG-NN Fo is trained to predict an output sequence o(k) from

X (k), and another GG-NN FX is trained to predict X (k+1) from X (k). Prediction of the output at
each step is performed as in a normal GG-NN, and prediction of X (k+1) from the set of all final
hidden statesH(k,T ) (after T propagation steps of FX) occurs according to the equation

x
(k+1)
v = σ

(
j(h

(k,T )
v ,x

(k)
v )
)
.
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Figure 4: Diagram of the operations performed for each class of transformation. Graph state is
shown in the format given by Figure 1. Input and output are shown as gray boxes. Black dots
represent concatenation, and + and × represent addition and multiplication, respectively. 1 − #
represents taking the input value and subtracting it from 1. Note that for simplicity, operations are
only shown for single nodes or edges, although the operations act on all nodes and edges in parallel.
In particular, the propagation section focuses on information sent and received by the first node only.
In that section the strengths of the edges in the connectivity matrix determine what information is
sent to each of the other nodes. Light gray connections indicate the value zero, corresponding to
situations where a given edge is not present.

APPENDIX B GRAPH TRANSFORMATION DETAILS

In this section I describe in detail the implementations of each type of differentiable graph trans-
formation.1 A diagram of the implementation of each transformation is shown in Figure 4. Note
that it is natural to think of these transformations as operating on a single graphical state, and each
modifying the state in place. However, in the technical descriptions of these transformations, the
operations will be described as functions that take in an old graph and produce a new one, similarly
to unrolling a recurrent network over time.

B.1 NODE ADDITION

The node addition transformation Tadd : Γ × Rα → Γ takes as input a graph G and an input vector
a ∈ Rα, and produces a graph G′ with additional nodes. The annotation and strength of each new
node is determined by a function fadd : Rα × Rβ → R × RN × Rβ , where α is the length of the
input vector, β is the length of the internal state vector, and as before N is the number of node types.
The new nodes are then produced according to

(s|VG |+i,x|VG |+i,hi) = fadd(a,hi−1), (4)

starting with h0 initialized to some learned initial state, and recurrently computing sv and xv for
each new node, up to some maximum number of nodes. Based on initial experiments, I found that
implementing fadd as a GRU layer followed by 2 hidden tanh layers was effective, although other
recurrent networks would likely be similarly effective. The node hidden states hv are initialized to
zero. The recurrence should be computed as many times as the maximum number of nodes that

1The code for each transformation, and for the GGT-NN model itself, is available at https://github.
com/hexahedria/gated-graph-transformer-network.

14

https://github.com/hexahedria/gated-graph-transformer-network
https://github.com/hexahedria/gated-graph-transformer-network


Published as a conference paper at ICLR 2017

might be produced. The recurrent function fadd can learn to output sv = 0 for some nodes to create
fewer nodes, if necessary.

Note that in order to use information from all of the existing nodes to produce the new nodes, the
input to this transformation should include information provided by an aggregation transformation
Trepr, described in section B.5.

B.2 NODE STATE UPDATE

The node state update transformation Th : Γ×Rα → Γ takes as input a graph G and an input vector
a ∈ Rα, and produces a graph G′ with updated node states. This is accomplished by performing a
GRU-style update for each node, where the input is a concatenation of a and that node’s annotation
vector xv and the state is the node’s hidden state, according to

rv = σ (Wr[a xv] + Urhv + br) , zv = σ (Wz[a xv] + Uzhv + bz) ,

h̃′v = tanh (W[a xv] + U (r� hv) + b) , h′v = zv � hv + (1− zv)� h̃′v

B.2.1 DIRECT REFERENCE UPDATE

For some tasks, performance can be improved by providing information to nodes of a particular type
only. For instance, if the input is a sentence, and one word of that sentence directly refers to a node
type (e.g., if nodes of type 1 represent Mary, and Mary appears in the sentence), it can be helpful to
allow all nodes of type 1 to perform an update using this information. To accomplish this, Th can
be modified to take node types into account. (This modification is denoted Th,direct.) Instead of a
single vector a ∈ Rα, the direct-reference transformation takes in A ∈ RN×α, where An ∈ Rα is
the input vector for nodes with type n. The update equations then become

av = xvA

rv = σ (Wr[av xv] + Urhv + br) , zv = σ (Wz[av xv] + Uzhv + bz) ,

h̃′v = tanh (W[av xv] + U (r� hv) + b) , h′v = zv � hv + (1− zv)� h̃′v

B.3 EDGE UPDATE

The edge update transformation TC : Γ×Rα → Γ takes a graph G and an input vector a ∈ Rα, and
produces a graph G′ with updated edges. For each pair of nodes (v, v′), the update equations are

cv,v′ = fset(a,xv,hv,xv′ ,hv′) rv,v′ = freset(a,xv,hv,xv′ ,hv′)

C′v,v′ = (1− Cv,v′)� cv,v′ + Cv,v′ � (1− rv,v′).

The functions fset, freset : Rα×2N×2D → [0, 1]Y are implemented as neural networks. (In my
experiments, I used a simple 2-layer fully connected network.) cv,v′,y gives the level of belief in
[0, 1] that an edge from v to v′ of type y should be created if it does not exist, and rv,v′,y gives the
level of belief in [0, 1] that an edge from v to v′ of type y should be removed if it does. Setting both
to zero results in no change for that edge, and setting both to 1 toggles the edge state.

B.4 PROPAGATION

The propagation transformation Tprop : Γ → Γ takes a graph G = G(0) and runs a series of T
propagation steps (as in GG-NN), returning the resulting graph G′ = G(T ). The GG-NN propagation
step is extended to handle node and edge strengths, as well as to allow more processing to occur to
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the information transferred across edges. The full propagation equations for step t are

a(t)v =
∑
v′∈V

sv′
M∑
y=1

Cv,v′,y � f fwd
y (xv′ ,h

(t−1)
v′ ) + Cv′,v,y � f bwd

y (xv′ ,h
(t−1)
v′ ) (5)

z(t)v = σ(Wz[a
(t)
v xv] + Uh(t−1)

v + bz) (6)

r(t)v = σ(Wr[a
(t)
v xv] + Urh

(t−1)
v + br) (7)

h̃
(t)
v = tanh(W[a(t)v xv] + U(r(t)v � h(t−1)

v ) + bh) (8)

h(t)
v = (1− z(t)v )� h(t−1)

v + z(t)v � h̃
(t)
v . (9)

Equation 5 has been adjusted in the most significant manner (relative to Equation 2). In particular,
sv′ restricts propagation so that nodes with low strength send less information to adjacent nodes,
sedge has been replaced with C to allow edges with fractional strength, and the propagation matrices
Py,P

′
y have been replaced with arbitrary functions f fwd

y , f bwd
y : RN × RD → Rα, where α is the

length of the vector a. I used a fully connected layer to implement each function in my experiments.
Equations 6, 7, and 8 have also been modified slightly to add a bias term.

B.5 AGGREGATION

The aggregation transformation Trepr : Γ→ Rα produces a graph-level representation vector from a
graph. It functions very similarly to the output representation of a GG-NN (equation 3), combining
an attention mechanism with a node representation function, but is modified slightly to take into
account node strengths. As in GG-NN, both i and j are neural networks, and in practice a single
fully connected layer appears to be adequate for both.

hG = tanh
(∑

v∈V svσ(i(h
(T )
v ,xv))� tanh(j(h

(T )
v ,xv))

)
.

APPENDIX C GRAPH FORMAT DETAILS

C.1 BABI TASKS

The knowledge graph object used during generation of the bAbI tasks is structured as a dictionary
relating entities to each other with specific relationship types. Entities are identified based on their
names, and include people (John, Mary, Sandra), locations (bedroom, kitchen, garden), objects
(football, apple, suitcase), animals (mouse, wolf, cat), and colors (white, yellow, green), depending
on the particular task. Relationships between entities are also expressed as strings, and are directed:
if John is holding the milk there is an “is in” relationship from “milk” to “John”; if Sandra is in
the bedroom there is an “is in” relationship from “Sandra” to “bedroom”; if Lily is green there is a
“has color” relationship from “Lily” to “green”, etc.

The transformation from the knowledge object to a graph is straightforward: each entity used is
assigned to a new node type, and relationships between entities are represented as edges between
the corresponding nodes. To avoid confusion from overloaded relationships (such as “is in” being
used to represent an object being held by a person as well as a person being in a room), relation
names are given a distinct edge type depending on the usage context. For instance, when a person is
carrying an object, the generic “is in” relationship becomes an edge of type “gettable is in actor”.

Some of the graph representations had to be modified in order to ensure that they contained all of
the necessary information. For instance, task 3 requires the network to remember where items were
in the past, but the knowledge object only contained references to their current locations. In these
cases, a linked list structure was added to the knowledge object to allow the history information to
be represented in the graph.

In particular, each time an item changed locations, a new “record” node was added, with a “previous”
edge to the previous history node and a “value” edge to the current location of the item. Each item
then connected to the most recent history node using a “history-head” edge. This ensures that the
history of each node is present in the graph.
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1. John grabbed the milk.
2. John travelled to the bedroom.
3. Sandra took the football.
4. John went to the garden.
5. John let go of the milk.
6. Sandra let go of the football.
7. John got the football.
8. John grabbed the milk.
Where is the milk?

actor_is_in_location

Milk

John

Bedroom

Football

Sandra

Garden

gettable_is_in_location gettable_is_in_actor

Figure 5: Diagram of one sample story from the bAbI dataset (Task 2), along with a graphical
representation of the knowledge state after the italicized sentence.

1. init 1
2. init 1
3. init 1
4. init 1
5. init 1
6. init 0
7. init 0
8. init 0
9. init 1
10. init 1

11. init 1
12. init 1
13. init 0
14. simulate
15. simulate
16. simulate
17. simulate
18. simulate
19. simulate
20. simulate

Zero

One

New cells (left) New cells (right)Initial cells

Value edges

Neighbor edges

Figure 6: Diagram of one example from the automaton task, along with a graphical representation
of the automaton state after the fourth simulate command (italicized).

1. rule state 3 0 0 state 0 L
2. rule state 1 0 1 state 0 R
3. rule state 2 1 1 state 2 L
4. rule state 3 1 0 state 3 L
5. rule state 0 1 0 state 0 R
6. rule state 0 0 1 state 2 N
7. rule state 2 0 0 state 2 R
8. rule state 1 1 1 state 0 N
9. start state 1

10. input symbol 0 head
11. input symbol 0
12. input symbol 0
13. input symbol 1
14. run
15. run
16. run
17. run
18. run
19. run

Current state

States and rules

Head

Cells

Zero One

Current cell

Figure 7: Diagram of an example from the Turing machine task, with a graphical representation of
the machine state after the second run command (italicized).
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In a few of the tasks, specific entities had multi-word representations. While this works for normal
input, it makes it difficult to do direct reference, since direct reference is checked on an individual
word level. These tasks were modified slightly so that the entities are referred to with single words
(e.g. “red square” instead of “red square”).

An example of a graph produced from the bAbI tasks is given in Figure 5.

C.2 CELLULAR AUTOMATON

The cellular automaton task was mapped to graphical format as follows: Nodes have 5 types: zero,
one, init-cell, left-cell, and right-cell. Edges have 2 types: value, and next-r. There is always exactly
one “zero” node and one “one” node, and all of the cell nodes form a linked list, with a “value” edge
connecting to either zero or one, and a “next-r” edge pointing to the next cell to the right (or no edge
for the rightmost cell).

At the start of each training example, there are 13 timesteps with input of the form “init X” where X
is 0 or 1. These timesteps indicate the first 13 initial cells. Afterward, there are 7 “simulate” inputs.
At each of these timesteps, one new left-cell node is added on the left, one new right-cell node is
added on the right, and then all cells update their value according to the Rule 30 update rules.

An example of the graphical format for the cellular automaton task is given in Figure 6.

C.3 TURING MACHINE

For the Turing machine task, nodes were assigned to 8 types: state-A, state-B, state-C, state-D,
head, cell, 0, and 1. Edges have 16 types: head-cell, next-left, head-state, value, and 12 types of
the form rule-R-W-D, where R is the symbol read (0 or 1), W is the symbol written (0 or 1), and
D is the direction to move afterward (Left, Right, or None). State nodes are connected with rule
edges, which together specify the rules governing the Turing machine. Cell nodes are connected to
adjacent cells with next-left edges, and to the symbol on the tape with value edges. Finally, the head
node is connected to the current state with a head-state edge, and to the current cell of the head with
a head-cell edge.

At the start of each training example, each of the rules for the Turing machine are given, in the
form “rule state-X R W state-Y D”. Next, the initial state is given in the format “start state-X”, and
the initial contents of the tape (of length 4) are given sequentially in the format “input symbol-X”,
with the position for the head to start marked by “input symbol-X head”. Finally, there are 6 “run”
inputs, after each of which the head node updates its edges and the cell at the head updates its value
according to the rules of the Turing machine. If the head leaves the left or right of the tape, a new
node is introduced there.

An example of the graphical format for the Turing machine task is given in Figure 7.

APPENDIX D GRAPH SEQUENCE INPUT

The model described in Section 4 conditions the output of the model on the final graph produced
by the network. This is ideal when the graph represents all of the necessary knowledge for solving
the task. However, it may also be desirable for each graph to represent a subset of knowledge corre-
sponding to a particular time, and for the output to be based on the sequence of graphs produced. For
instance, in the third bAbI task (which requires reasoning about the temporal sequence of events)
each graph could represent the state of the word at that particular time, instead of representing the
full sequence of events prior to that time. In Appendix C, section C.1, I describe a transformation
to the tasks which allows all information to be contained in the graph. But this adds complexity to
the graphical structure. If it were possible for the model to take into account the full sequence of
graphs, instead of just the final one, we could maintain the simplicity of the graph transformation.

To this end, I present an extension of the GGT-NN model that can produce output using the full
graphical sequence. In the extended model, the graphical output of the network after each input
sentence is saved for later use. Then, when processing the query, the same set of query transfor-
mations are applied to every intermediate graph, producing a sequence of representation vectors
hanswer
1 , . . . ,hanswer

K . These are then combined into a final summary representation vector hanswer
summary
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Direct reference No direct reference
Task Accuracy Accuracy

3 - Three Supporting Facts 90.3% 65.4%
5 - Three Arg. Relations 89.8% 74.2%

Table 4: Performance of the sequence-extended GGT-NN on the two bAbI tasks with a temporal
component.

Algorithm 2 Sequence-Extended Pseudocode
G0 ← ∅ . Initialize G to an empty graph
for k from 1 to K do . Process each sentence
Gk ← Th(Gk−1, i

(k))

if direct reference enabled then
Gk ← T direct

h (Gk,D(k))

end if
if intermediate propagation enabled then
Gk ← Tprop(Gk)

end if
hadd
Gk ← Trepr(Gk)
Gk ← Tadd(Gk, [i(k) hadd

Gk ])

Gk ← TC(Gk, i(k))
end for
hanswer

summary ← 0 . Initialize hanswer
summary to the zero vector

for k from 1 to K do . Process the query for each graph
Gk ← T query

h (Gk, iquery)

if direct reference enabled then
Gk ← T query,direct

h (Gk,Dquery)

end if
Gk ← T query

prop (Gk)
hanswer
Gk ← T query

repr (Gk)
hanswer

summary ← fsummarize(h
answer
Gk ,hanswer

summary)

end for
return foutput(h

answer
summary)

using a recurrent network such as a GRU layer, from which the output can be produced. The modi-
fied pseudocode for this is shown in Algorithm 2.

I evaluated the extended model on bAbI tasks 3 and 5, the two tasks which asked questions about a
sequence of events. (Note that although Task 14 also involves a sequence of events, it uses a set of
discrete named time periods and so is not applicable to this modification.) The model was trained
on each of these tasks, without the extra record and history nodes used to store the sequence, instead
simply using the sequence of graphs to encode the relevant information. Due to the simpler graphs
produced, intermediate propagation was also disabled.

Results from training the model are shown in Table 4. The accuracy of the extended model appears
to be slightly inferior to the original model in general, although the extended direct-reference model
of task 5 performs slightly better than its original counterpart. One possible explanation for the
inferiority of the extended model is that the increased amount of query processing made the model
more likely to overfit on the training data. Even so, the extended model shows promise, and could be
advantageous for modeling complex tasks for which preprocessing the graph would be impractical.
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